
THE AFIT WIDE SPECTRUM OBJECT MODELING

ENVIRONMENT: AN AWSOME BEGINNING

THOMAS C. HARTRUM� and ROBERT P. GRAHAM, JR.�

* Air Force Institute of Technology, AFIT/ENG, WPAFB, OH 45433, USA,
Thomas.Hartrum@a�t.af.mil, Robert.Graham@a�t.af.mil

Abstract. Over the past several years, the Air Force Institute of Technology (AFIT) has been develop-
ing a formal-based software synthesis system, the AFIT Wide Spectrum Object Modeling Environment
(AWSOME), along with a speci�cation language AWL (AFIT Wide-spectrum Language). Several tools
have been developed, including a parser for the AWL syntax, an interactive object editor, a Java code
generator, and a generator for database schemas and SQL queries. This paper describes the formal
object-oriented meta-model, the AWL speci�cation language, and transformations from speci�cation to
code, along with current and future tools and applications.

Key Words: Formal Methods, Software Engineering, Software Synthesis

1. INTRODUCTION

Although signi�cant progress has been made in re-
cent years in the areas of formal methods in soft-
ware development and automatic code synthesis,
the development of large, complex software sys-
tems is still beset by problems. Over the past
several years, the Air Force Institute of Technol-
ogy (AFIT) has been developing a formal-based
software synthesis system1. The approach used
is that of semi-automated software synthesis us-
ing a transformation system [1]. As pictured in
Figure 1, domain knowledge is stored in a formal
domain model. A formal speci�cation for a spe-
ci�c problem is generated by an application engi-
neer from the domain model during the problem

setting phase. Correctness-preserving transforma-
tions are then applied to this formal requirements

speci�cation to transform it to a formal design
speci�cation. Finally, further transformations are
applied to generate the executable code.
Most authors view a transformation system as

an aide to a human designer (software engineer)
who is needed to make appropriate design deci-
sions. Formal methods allow reasoning techniques
to be applied to determine di�erent levels of \cor-
rectness" of the speci�cation, such as inconsistent
requirements and missing data. In addition, the
formal representation allows computer manipula-
tion of the speci�cation to transform it into a

1This research was sponsored by the Air Force Research

Laboratory, AFRL/IFTD, Rome, NY., BEA 96-1102.

design representation. The AFIT transformation
system is object-oriented, based on Rumbaugh's
Object Modeling Technique (OMT) [2] and the
Uni�ed Modeling Language (UML) [3]. The un-
derlying model includes the structural (object)
model, the functional model (operations), and the
dynamic (state-based) model.
The initial prototype system, AFITtool, was

implemented in the REFINE TM language, along
with some LISP, using the Software Re�nery sys-
tem by Reasoning Systems [4] and could generate
Ada95 source code from speci�cations written in
the formal language Z [5], extended to support
state transition tables [6]. AFITtool is based on
a meta-model represented using abstract syntax
trees (ASTs), as shown in Figure 2. Domain mod-
els can be parsed into the domain AST or cre-
ated interactively. A domain model can then be
specialized interactively to create a speci�cation
AST for a speci�c problem. The speci�cation is
then transformed into an abstract design, also rep-
resented in an AST, from which Ada95 code can
be generated. It might be noted that while both
the domain AST and the speci�cation AST are of
the same general form, a completely di�erent AST
structure is used for the design. This initial proto-
type was developed by a number of AFIT students
and faculty over a period of six years [7] [8] [9] [10]
[11] [12] [13] [14] [15].
In 1999 the decision was made to redevelop the

system in Java, due to the limited availability of

Domain Expert
and

Domain Engineer

Application

Engineer

Engineer

Software

Problem

Statement

Domain
Modeling

Problem
Setting

Design

Transform

Knowledge

Domain

Domain
Formal

Model

Code

Generation

Histories
Design
Formal

Specification
Formal

Executable

Code

Specification

Design

test

Cases

Code

Reuse

Library

Domain
Model

Specification Design
ReuseReuse
LibraryLibraryLibrary

Language

Choice

Design

Decisions

& Rationale

Figure 1: Typical Transformation System.

Code

Generation

Executable

Code

Domain
Modeling

Domain Expert
and

Domain Engineer

Knowledge

AST
Domain

AST

Statement

ProblemDomain

Problem
Setting

Engineer

Application

Specification

Transform

Engineer

Software

Histories
Design
Formal

AST
Design

Design

Figure 2: AFITtool's AST-based Transformation System.

Code

Generation

Knowledge

AST
Spectrum

Statement

ProblemDomain

Domain

Modeling
Wide

Problem
Setting

Design

Transform

Histories
Design
Formal

Formal

Code

Executable

Other

Specification

Parser

Tools

Figure 3: AWSOME Transformation System.

REFINE at sponsoring organizations and most
students' lack of familiarity with programming in
REFINE. Since all of the meta-model ASTs in
AFITtool are similar, it was also decided to com-
bine them into a single wide-spectrummeta-model
AST. This allows various tools to access the model
in any stage, as illustrated in Figure 3. The result-
ing new system was dubbed the AFIT Wide Spec-
trum Object Modeling Environment (AWSOME).
It was also decided to develop a new formal speci�-
cation language AWL (AFIT Wide-spectrum Lan-
guage) to use in place of Z, providing an easier
user interface. Both the meta-model and the AWL
syntax were designed to support not only software
synthesis from formal speci�cations, but also on-
going research in reverse engineering of legacy soft-
ware [16] [17] [18]. Finally, the target language for
the synthesis process was changed to Java, with
some feasibility demonstration of C++, given the
reduced emphasis on using Ada.
The remainder of this paper describes the for-

mal object-oriented meta-model and the new spec-
i�cation language. Tools and applications are also
discussed, along with current and future work.

2. THE AWSOME META-MODEL

Underlying the Java implementation of AWSOME
is a formal model that is the basis for correct-
ness proofs and correctness-preserving transfor-
mations. The following sections describe both the
formal model and the resulting Java design.

2.1 The Formal Meta-Model

The lowest-level elements in the model are as-
sumed to be strings. Abstractly the model is de-
�ned in terms of the following sets.

� VAR is a set of variables.
8x 2 VAR; x =< name; type >.

� VAL is a set of literal values.

� EXP is a set of expressions de�ned over
VAR and VAL and an unspeci�ed set of op-
erators.
typeof : EXP ! STRING is a total func-
tion that returns the type of each expression.

� BEXP � EXP is the set of boolean expres-

sions de�ned over VAR and VAL and the
operators \^" _" and \: ".

An AWSOME model consists of a set of object
classes, where an object class C is de�ned as
the structural model consisting of a set of at-
tributes (variables), the functional model consist-
ing of a set of methods, and a dynamic (state-
based) model.

� C =< name; inv;A;M;S;E;SF ;T; sc; s0 >,
where inv 2 BEXP is an invariant de�ned
over the class's attributes that must always
be true.

� A is a set of attributes, A � VAR. There
is also a duplicate set A0 where all the names
have a tick (0) appended as a notational mech-
anism for specifying the \after" value in post-
conditions.

� M is a set of methods. A method is de�ned
by a name, a set of input parameters, a set
of output parameters, a precondition, and a
postcondition. 8m 2M;

m =< name; I;O; pre; post >

where inputs I � VAR, outputs O � VAR,
precondition pre 2 BEXP, and postcondi-
tion post 2 BEXP.

The remaining elements in the tuple of C represent
the dynamic model. This is a standard UML state
model extended with an initial state, a set of �nal
states, and a \current" state.

� S is a set of states. 8 s 2 S,
s =< name; inv >, where
invariant inv 2 BEXP.

� E is a set of events. 8 e 2 E,
e =< name;P; con >, where parameter set
P � VAR, constraint con 2 BEXP.

� SF is a set of �nal states, SF � S.

� s0 is the initial state, s0 2 S.

� sc is the current state, sc 2 S.

� T is a set of transitions. 8 t 2 T,
t =< scurrent; ecause;

guard; snext; action;SEND >,
where
current state scurrent 2 S,
causing event ecause 2 E,
guard condition guard 2 BEXP,
next state snext 2 S,
operation action 2M,
and events to be sent SEND � E.

While the above formal model is su�cient to de-
�ne the structure of the meta-model, it essentially
de�nes only the syntax of the AWSOME model.
Additionally, formal semantic rules have been de-
�ned. While the AWL parser (Section 3) can en-
force the syntax rules, additional reasoning over a
speci�c instance of the AST is required to check
most of the semantics (Section 5). As an exam-
ple, a few of the many semantic rules are presented
here.

� 8m 2M, m.pre is de�ned over A [m.I.
The precondition is de�ned over initial at-
tributes and inputs of the method.

� 8 t 2 T, t.guard is de�ned over A [t:ecause.P.
The guard condition is de�ned over the class's
attributes and the causing event's parame-
ters, if any.

� 8 t 2 T, t.action 2 M.
All actions are in the class's set of methods.

2.2 The Java Meta-Model Implementation

The above formal model was then designed as an
object model itself. Figure 4 shows part of the
aggregate model and part of the inheritance hier-
archy. This model was then implemented in Java.
For example, the object class C is implemented by
the Java class de�nition WsClass.java. Partial
Java code for this class, slightly simpli�ed, is in-
cluded in Figure 4. Currently the model consists
of 130 Java classes and 26,000 lines of code.

MethodAttribute Expression Dynamic
Model

* 1 1*

WsClass

ExpressionInput Output

* * 2

State Event

Transition

* *

*

Method

WsObject

Variable
type

name

OutputInputAttribute

Expression

Dynamic
Model

WsClass

public class WsClass extends WsObject

{

protected Vector wsClassDataComponents;

//Set of Attribute

protected Vector wsClassOperations;

//Set of Method

protected WsDynamicModel wsDynamicModel;

protected Vector wsInvariant;

//Set of Expression

... (more) ...

}

Figure 4: AWSOME Object Meta-Model.

3. THE AWL FORMAL LANGUAGE

Initially the formal language Z was chosen to rep-
resent formal speci�cations [5]. This decision was
made before any attempt at automation, when our
primary interest in formal methods was in teach-
ing them, and the pure mathematical aspect of
Z made it easier to teach formal concepts than
using a \computer-like" formal language, such as
REFINE TM [4]. The Z language was extended
by the addition of a state transition table to allow

for the full object model to be represented [6]. A
student wrote a parser for the Z language (in RE-
FINE), and it became the speci�cation language
for AFITtool. A partial example of a Z speci�ca-
tion for a simple timer is shown in Figure 5. Al-
though the syntax as shown in Figure 5 is easier
to teach, it is not easy to write in a parsable form.
Figure 6 shows the corresponding LATEX source
representation. Due to this di�culty, it was de-
cided to develop a new speci�cation language to
support the new AWSOME model.

[SIMTIME]

T imer

time left : SIMTIME

time left > 0

Current Event Next Action Send

Idle SetTimer Timing CalcTime Schedule

Timing TimeUp Idle Reset Expires

Figure 5: Example Z Speci�cation.

\begin{zed}

[SIMTIME]

\end{zed}

\begin{schema}{ Timer }%ObjectTheory

time_left: SIMTIME

\where

time_left > 0

\end{schema}

\label{ Timer }%TableTheory

\begin{tabular}{|l|l|l||l|l|l|}

\hline

Current & Event & & Next & Action & Send\\

\hline\hline

Idle & SetTimer & & Timing & CalcTime &

Schedule\\

\hline

Timing & TimeUp & & Idle & Reset &

Expires\\

\hline\hline

\end{tabular}

Figure 6: Example Z Speci�cation.

As with the meta-model, the language was de-
signed as a wide-spectrum language, allowing the
representation of imperative statements as well
as declarative pre- and postconditions. Conse-
quently, the language was named the AFIT Wide-
spectrum Language, AWL. Figure 7 shows the
AWL representation for the Timer class of Fig-
ure 6.

type SIMTIME is abstract;

class Timer is

private time_left: SIMTIME;

invariant time_left > 0

dynamic model is

transition table is

in Idle on SetTimer do CalcTime

send Schedule to Timing;

in Timing on TimeUp do Reset

send Expires to Idle;

end transition table;

end dynamic model;

end class;

Figure 7: Example AWL Speci�cation.

A parser for AWL syntax was developed using
JavaCC, a Java-based compiler-compiler, which
signi�cantly simpli�ed the development of the
parser [19]. In addition, Java code was developed
to generate AWL output directly from the AW-
SOME abstract syntax tree. This not only allows
a speci�cation to be initially written in AWL, but
also allows any model that is modi�ed within the
AWSOME environment to be saved in a form that
not only can be parsed back in, but that also al-
lows such changes to be easily examined in a fa-
miliar syntax.

4. EXISTING TOOLS

AFITtool evolved over six years, primarily in the
context of object-oriented software synthesis and
of reverse engineering imperative code into object-
oriented code. The current AWSOME system was
developed in a little over one year in support of six
master's theses. Thus the current tools and capa-
bilities are largely the outgrowth of those thesis
e�orts.
From an object-oriented synthesis perspective,

we have developed an interactive tool that al-
lows application object models to be interactively
created, or to be modi�ed after being parsed in.
Transforms have been implemented to generate get

and set methods automatically for every attribute
of a class [20]. A series of transformations were de-
veloped to convert the dynamic (state) model into
a set of methods and message-passing calls. This
was done as part of an e�ort to semi-automatically
generate distributed multi-agent systems [21]. Fi-
nally, a code generator was developed that gener-
ates Java source code from the transformed AW-
SOME AST [20].
An interesting application of the AWSOME

model was the development of a system for in-
tegrating battle simulation models [20]. This tool
allows for individual simulationmodels, written in
the AWL syntax, to be parsed into the AWSOME
system, and then interactively merged to form a
common model. The tool is then capable of gen-
erating the code needed to both parse individual
scenario �les into the common model, and to gen-
erate individual scenario �les from the common
model. This also facilitates translating one simu-
lation scenario �le into that of another simulation.

While generating object-oriented code is of pri-
mary interest, the object-oriented speci�cations
(exclusive of the state-based dynamic model) also
support the entity-relationship (E-R) model used
in database systems. A code generator was devel-
oped that generates relational database schemas
and queries in SQL from the AWSOME abstract
syntax tree [22].
The other thesis e�orts were more software en-

gineering focused. While AWSOME models can
currently be saved and reloaded using the AWL
syntax, the resultant set of *.awl �les can become
large and unmanageable, especially when multiple
versions and alternatives are kept. To solve this
problem, a central repositorywas developed for the
AWSOME model using the Object Store database
system [23]. Finally, for large, complex systems,
there is a need to integrate the use of software ar-
chitecture concepts into the design transforms. A
prototype model of including architectural issues
in AWSOME was developed [24].

5. ONGOING AND FUTURE WORK

One of the arguments for using formal methods is
the ability to use computerized tools such as au-
tomated theorem provers to verify the correctness
of the speci�cation. A current e�ort, scheduled
for completion in September of 2000, is interfacing
AWSOME with existing formal veri�cation tools
for that purpose [25]. The tools being used are
Z/Eves [26] and Spin (using Promela) [27]. The

latter has already been used to verify event pass-
ing between software components in our related
research into multi-agent systems [28][29].
Work has also begun on using the AWSOME

environment to integrate di�erent formal mod-
els [30]. The goal is to be able to integrate an ap-
plication speci�cation with existing formal speci�-
cations for such subsystems as security protocols,
communication protocols, and user interface mod-
els, thus freeing the application engineer from hav-
ing to address these areas in detail. As part of this
e�ort, existing transformations that were de�ned
for AFITtool in REFINE will be implemented in
AWSOME [12][13].

6. CONCLUSIONS

The work on AFITtool and AWSOME over the
past several years has demonstrated the feasibil-
ity of developing formal speci�cations and apply-
ing automatic transforms to generate executable
code. One of the problems of working with formal
systems is the di�culty of learning and applying
the formal languages used in such systems. This
was our experience with AFITtool, itself written
in the REFINE TM language, and in transforming
speci�cations written in Z using LATEX syntax.

The AWSOME system has shown that a formal-
based system can be built using a more conven-
tional object-oriented language. A reasonably
user-friendly yet formal speci�cation language is
also possible. The development in little more than
a year of the equivalent of AFITtool, which itself
took six years, speaks somewhat to the advantage
of using a more common language. It also shows
the bene�t of building an initial prototype, then
building on the lessons learned.

We anticipate several future bene�ts to switch-
ing to Java. First, most students and other practi-
tioners are familiar with it, allowing contributions
to the AWSOME tool suite to come from many
sources, while with AFITtool only the few stu-
dents who took our software engineering course
sequence had the opportunity to learn REFINE.
Second, for these same reasons, Java will allow
the AWSOME environment to be easily ported
to our sponsoring organizations and collaborators,
something not possible with REFINE. Third, the
graphic user interface libraries available with Java
make the development of interactive tools much
easier than was possible with REFINE. Finally,
we see the potential for developing a web-based
interface for our tools, which would make their use

available to students and others without the need
for downloading large amounts of code. Overall,
this appears to be a truly \AWSOME" beginning.

||||||||||-
The views expressed in this article are those of the

author and do not reect the o�cial policy or po-

sition of the United States Air Force, Department

of Defense, or the US Government.

References

[1] R. Balzer, T. E. Cheatham, Jr., and
C. Green, \Software technology in the 1990's:
Using a new paradigm," Computer, pp. 39{
45, November 1983.

[2] J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design. Englewood Cli�s, New
Jersey: Prentice-Hall, Inc., 1991.

[3] G. Booch, J. Rumbaugh, and I. Jacobson,
The Uni�ed Modeling Language User Guide.
Reading, MA: Addison Wesley, 1999.

[4] Reasoning Systems, Inc., 3260 Hillview Av-
enue, Palo Alto, CA 94304, Re�ne User's

Guide, 1990.

[5] B. Potter, J. Sinclair, and D. Till, An Intro-

duction to Formal Speci�cation and Z. New
York: Prentice Hall, 1991.

[6] T. C. Hartrum and P. Bailor, \A formal
extension to object oriented analysis using
z," Tech Report AFIT/EN/TR-94-07, AD-
A290911, Air Force Institute of Technology,
Wright-Patterson AFB, OH, Oct 1994.

[7] K. M. Wabiszewski, \Uni�cation of larch
and z-based object models to support
algebraically-based design re�nement: The z
perspective," Master's thesis, Air Force Insti-
tute of Technology, Wright-Patterson AFB,
OH, Dec 1994. AFIT/GCS/ENG/94D-24,
AD-A289 234.

[8] C. J. Lin, \Uni�cation of larch and z-based
object models to support algebraically-based
design re�nement: The larch perspective,"
Master's thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, Dec
1994. AFIT/GCS/ENG/94D-15, AD-A289
235.

[9] C. G. Beem, \Transforming algebraically-
based object models into a canonical form for
design re�nement," Master's thesis, Air Force
Institute of Technology, Wright-Patterson
AFB, OH, Dec 1995. AFIT/GCS/ENG/95D-
01, AD-A303 748.

[10] S. A. DeLoach, Formal Transformations

from Graphically-Based Object-Oriented Rep-

resentations to Theory-Based Speci�cation.
PhD thesis, Air Force Institute of Technol-
ogy, Wright-Patterson AFB, OH, June 1996.
AFIT/DS/ENG/96-05, AD-A310 608.

[11] T. Karagias, \Elicitation of formal software
speci�cations from an object-oriented domain
model,"Master's thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, Dec
1996. AFIT/GCS/ENG/96D-14, AD-A320
698.

[12] J. Kissack, \Transforming aggregate object-
oriented formal speci�cations to code," Mas-
ter's thesis, Graduate School of Engineer-
ing, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, Mar 1999.
AFIT/GCS/ENG/99M-09, AD-A361759.

[13] T. W. Tankersley, \Generating executable
code from formal speci�cations of primitive
objects," Master's thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH,
Mar 1999. AFIT/GCS/ENG/99M-19, AD-
A361722.

[14] P. Noe, \A structured approach to tool inte-
gration," Master's thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH,
Mar 1999. AFIT/GCS/ENG/99M-14, AD-
A361674.

[15] G. L. Anderson, \An interactive tool for re�n-
ing software speci�cations from a formal do-
mainmodel,"Master's thesis, Air Force Insti-
tute of Technology, Wright-Patterson AFB,
OH, Mar 1999. AFIT/GCS/ENG/99M-01,
AD-A361745.

[16] R. E. Sward, Extracting Functionally Equiva-
lent Object-Oriented Designs from Imperative

Legacy Code. PhD thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH,
Sep 1997. AFIT/DS/ENG/97-04.

[17] D. L. Moraes, \Transforming cobol legacy
software to a generic imperative model,"

Master's thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, Mar
1999. AFIT/GCS/ENG/99M-22.

[18] S. de Jesus Rodrigues, \Cobol reengi-
neering using the parameter based object
identi�cation (pboi) methodology," Mas-
ter's thesis, Air Force Institute of Technol-
ogy, Wright-Patterson AFB, OH, June 1999.
AFIT/GCS/ENG/99J-02.

[19] S. Sankar, \The javacc story."
www.metamata.com/javacc/story.html,
June 2000.

[20] M. R. Ashby, \Tool-based integration and
code generation of object models," Master's
thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2000.
AFIT/GE/ENG/00M-02.

[21] D. W. Marsh, \Formal object state model
transformations for automated agent system
synthesis," Master's thesis, Air Force Insti-
tute of Technology, Wright{Patterson AFB,
OH, Mar. 2000. AFIT/GCE/ENG/00M-03.

[22] S. R. Buckwalter, \Generating executable
persistant data storage/retrieval code from
object-oriented speci�cations," Master's the-
sis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2000.
AFIT/GCS/ENG/00M-02.

[23] J. Gary L. Cornn, \An object-oriented
repository-based software synthesis system,"
Master's thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, March
2000. AFIT/GCS/ENG/00M-05.

[24] D. L. Williams, \Explicitly modeling hierar-
chically heterogeneous software architectures
in an object-oriented formal transformation
system," Master's thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH,
March 2000. AFIT/GCS/ENG/00M-25.

[25] S. A. Thomson, \Validation and veri�ca-
tion of formal speci�cations in object ori-
ented software engineering," Master's the-
sis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, Sept 2000.
AFIT/GCS/ENG/00M-XX (in process).

[26] I. Meisels and M. Saaltink, \The z/eves refer-
ence manual," Tech Report TR-99-5493-03d,
ORA Canada, Canada, Sep 1997.

[27] B. Laboratory, \Ba-
sic spin manual." http://cm.bell-
labs.com/cm/cs/what/spin/Man/Manual.html,
June 2000.

[28] T. H. Lacey, \A formal methodology and
technique for verifying communication pro-
tocols in a multi-agent environment," Mas-
ter's thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2000.
AFIT/GCS/ENG/00M-12, AD-A361674.

[29] T. Lacey and S. A. DeLoach, \Automatic
veri�cation of multiagent conversations," in
Proceedings of the Eleventh Annual Midwest

Arti�cial Intelligence and Cognitive Science

Conference, (University of Arkansas, Fayet-
teville), pp. 93{100, April 2000.

[30] J. C. Nonnweiler, \Domain integration
methodology for multi-agent systems," Mas-
ter's thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2001.
AFIT/GCS/ENG/01M-XX (in process).

Author Biographies

Thomas C. Hartrum is currently an Associate Pro-
fessor in the Department of Electrical and Com-
puter Engineering at the Air Force Institute of
Technology (AFIT), where he has been a faculty
member for twenty years. Dr. Hartrum has been
involved in software engineering for many years,
and speci�cally with knowledge-based software en-
gineering (KBSE) since 1990. Prior to AFIT, Dr.
Hartrum was a research engineer at the Air Force
Aerospace Medical Research Laboratory. He re-
ceived the BSEE and MS degrees in 1969 and the
PhD in 1973 from The Ohio State University, and
the MBA in 1979 from Wright State University.

Major Robert P. Graham, Jr., USAF, is currently
an Assistant Professor in the Department of Elec-
trical and Computer Engineering at the Air Force
Institute of Technology (AFIT), where he has been
a faculty member for three years. Maj. Graham
has been involved in software engineering for many
years, particularly with formal methods in soft-
ware engineering. He received the BS in Computer
Science from Virginia Polytechnic Institute and
State University in 1986. He received his MS in
Computer Systems in 1988 and the PhD in 1996,
both from the Air Force Institute of Technology.

